

Multi-functional abnormality and bipolar disorder

Yi-shian Peng¹(彭奕憲), Chih-hao Chen¹ (陳志浩), Hoong-Chien Lee¹⁻⁴(李弘謙)

¹Institute of Systems Biology and Bioinformatics, National Central University, Zhongli, Taiwan 32001 ²Center for Dynamical Biomarkers and Translational Medicine, National Central University, Zhongli, Taiwan 32001 ³Department of Physics, Chung Yuan Christian University, Zhongli, Taiwan 32001 ⁴Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan

Background

Bipolar disorder (BD) is a chronic, severe psychiatric disorder with an estimated lifetime risk of about 1% (Ryan et al., 2006). Previously called manic depression, BD is one of the most challenging psychiatric disorders to manage. Patients are characterized by alternating episodes of mania and depression, accompanied by changes in activity associated with characteristic cognitive, physical, and behavioral symptoms (Anderson, Haddad, & Scott, 2012).

Motivations

Despite extensive research efforts, the underlying pathophysiology of BD remains unknown (Ryan et al., 2006). BD is a multi-system disorder, with symptoms likely caused by different diseases.

To explore these causes, we obtained functional analysis of genomic profile of BD cohorts using multiple sets of gene expression microarray data.

The purpose was to identify biological functions (as defined by Gene Ontology, or GO) associated with BD, to find relations among the functions, and to use these relations to construct a function association map for BD (BDFAM), thereby gaining insight to the systems property of BD

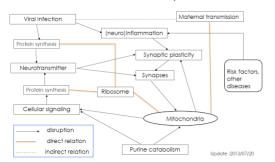
Result 3- Used top 40% GO functions as key words to search databases

Verification by text-mining (We mention three examples)

Purine catabolism

Several reports implicates cAMP signaling plays a central role in the psychobiology of mood disorders due to mediating responses of a number of nonoaminergics (e.g., dopamine).

Multi-organism processes (virus infection)


Several reports suggest Borna disease virus (BDV) causes several changes in brain functions resulting in mood, behavior, cognitive and neurologic disturbances including movement impairment.

Mitochondrial dysfunction

Several reports implicates defective energy metabolism of nitochondrial dysfunction merges into the pathophysiology of bipolar disorder, such as alterations of mitochondria size, decrease in phosphocreatine and ATP ect.

Result 4 - Found relations among functions

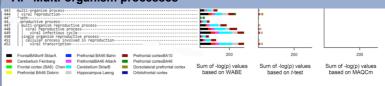
Function association map for BD

A prominent interaction was "disruption": if one function were disturbed, it might directly or indirectly affect other functions.

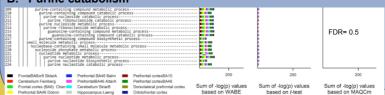
Proposed Approaches

- 1. We selected 12 sets of gene expression microarray data.
- 2. We used WABE (Weighing Arrays By Error, Chen et al.), t-test and MAQCm (Shi et al. 2006) to obtain differentially expressed genes between patients and healthy control, with which we then identify over-represented GO functions on bipolar affective disorder.
- 3. We ranked GO functions yielded by WABE by -log(p) value, then used the top 40% terms as key words to search the databases MEDLINE, PUBMED, and PsycINFO (1900-2013) for verification and annotation of our GO function results, and for the construction of BDFAM.

Result 1:Three Protocols for Bipolar Collection


WABE yielded vastly more over-represented GO functions than *t-test* and MAQCm FDR=0.5 was used to call differentially expressed genes, when a smaller value FDR=0.05 was used, only yielded GO functions.

Contrast	WABE	TTest	MAQCM	WABEG	TTest	MAQCM	WABE	TTest	MAQCM:	C	Contrast	WABE	Ttest	MAQCM		Ttest	MAQCM	WABE	Ttest	MAQCME
Sklar A	450	0	0	479	0	0	258	0	0		SklarA	859	0	0	879	0	0	358	0	0
Altar A	558	0	0	514	0	0	430	0	0		AltarA	1239	199		1121	211	0	574	29	0
SklarB	205	0	0	229	0	0	202	0	0		SklarB	429	0	0	504	0	0	248	0	0
Laeng	2966	0	0	2348	0	0		0	0	H	Laeng	7891	2926	0	5560	2272	0	100	206	0
GSE12654	48	0	0	78	0	0		0	0		SE12654	109	0	0	148	0	0	126	0	0
GSE12649		0	0	603	0	0		0	0		SE12649		0	0	1484	0	0	555	0	0
		- 0	- 0		- 0	_		_			GSE5388	4067	7691	1	3482	6228	1	204	109	0
GSE5388	996	0	0	925	0	0	144	0	0	0	GSE5389	1317	215	0	1140	214	0	361	11	0
GSE5389	407	0	0	367	0	0	134	0	0		Feinberg	2030	2986	0	2026	2813	0	318	109	0
Feinberg	809	13	0	855	21	0	233	0	0		Chen	3304	5	0	2459	4	0	773	3	0
Chen	1181	0	0	937	0	0	429	0	0		Dobrin	721	0	0	618	0	0	347	0	0
Dobrin	213	0	0	197	0	0	111	0	0		Bahn	2633	2061	2	2312	1884	2	224	68	0
Probeset											robeset									
Gene											Jene									
Function										P	unction									


The prominent GO functions found by WABE were: mitochondrial dysfunction, purine catabolism, synaptic plasticity, neurotransmitter, cellular component organization, cell signaling, establishment of protein ocalization, multi-organism processes, inflammation, and others.

Result 2: Prominent GO functions found

(we mention two examples) Multi-organism processes

Purine catabolism

References

Chen et al . Weighing Arrays By Error (Submitted, 2013)

Anderson, I. M., Haddad, P. M., & Scott, J. (2012). Bipolar disorder_CLINICAL REVIEW. BMJ, 345, e8508. National Institute of Mental Health. (2008). <nimh-bipolar-adults.pdf>

Kessler, Ronald C, et al. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of general psychiatry, 62(6), 593.

Ryan, M. M., et al. (2006). Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry, 11(10), 965-978.

Shi, L., et al. (2006). "The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements." Nature Biotechnology 24, 1151-1161.

Summary: Our results suggest multi-functional abnormality as a cause of BD.